2-dimensional advection-reaction

Advection-reaction in 2D

Solve the 2D advection-reaction problem

\[\begin{split}p_t + u(x,y,t) p_x + v(x,y,t) p_y = \epsilon q \\ q_t + u(x,y,t) q_x + v(x,y,t) q_y = \epsilon p\end{split}\]

Note that the left hand side of this system is the non-conservative transport equation for p and q. The Riemann solver assumes that velocities are specified at cell edges.

This example also shows how to use your own Riemann solver.

Output:

../../_images/pyclaw_examples_advection_reaction_2d__plots_advection_reaction_frame0000fig0.png ../../_images/pyclaw_examples_advection_reaction_2d__plots_advection_reaction_frame0004fig0.png ../../_images/pyclaw_examples_advection_reaction_2d__plots_advection_reaction_frame0010fig0.png

Source:

#!/usr/bin/env python
# encoding: utf-8
r"""
Advection-reaction in 2D
========================
Solve the 2D advection-reaction problem

.. math::
    p_t + u(x,y,t) p_x + v(x,y,t) p_y = \epsilon q \\
    q_t + u(x,y,t) q_x + v(x,y,t) q_y = \epsilon p

Note that the left hand side of this system is the non-conservative transport
equation for p and q.  The Riemann solver assumes that velocities are specified
at cell edges.

This example also shows how to use your own Riemann solver.
"""

from __future__ import absolute_import
import numpy as np
import os

try:
    from clawpack.pyclaw.examples.advection_reaction_2d import advection_2d
except ImportError:
    this_dir = os.path.dirname(__file__)
    if this_dir == '':
        this_dir = os.path.abspath('.')
    import subprocess
    cmd = "make -C "+this_dir
    proc = subprocess.Popen("make -C "+this_dir+"/", shell=True, stdout = subprocess.PIPE)
    proc.wait()
    try:
        # Now try to import again
        from clawpack.pyclaw.examples.advection_reaction_2d import advection_2d
    except ImportError:
        raise



t_period = 4.0
epsilon = 0.1

def source_step(solver,state,dt):
    "Integrate the source term over one step."
    qq = state.q.copy()
    state.q[0,:,:] = state.q[0,:,:] + epsilon*dt*qq[1,:,:]
    state.q[1,:,:] = state.q[1,:,:] + epsilon*dt*qq[0,:,:]


def psi(x,y):
    "Velocity field potential."
    return (np.sin(np.pi*x))**2 * (np.sin(np.pi*y))**2 / np.pi

def set_velocities(solver,state):
    "Update velocity field for current time."
    v_t = np.cos(2 * np.pi * (state.t + solver.dt/2) / t_period)
    X, Y = state.grid.p_nodes
    dx, dy = state.grid.delta
    # u(x_(i-1/2),y_j)
    state.aux[0,:,:] = - ( psi(X[:-1,1:],Y[:-1,1:]) - psi(X[:-1,:-1],Y[:-1,:-1]) ) / dy
    # v(x_i,y_(j-1/2))
    state.aux[1,:,:] =   ( psi(X[1:,:-1],Y[1:,:-1]) - psi(X[:-1,:-1],Y[:-1,:-1]) ) / dx
    state.aux[:] = v_t * state.aux[:]


def setup():
    from clawpack import pyclaw
    from clawpack.pyclaw.examples.advection_reaction_2d import advection_2d

    solver = pyclaw.ClawSolver2D(advection_2d)
    # Use dimensional splitting since no transverse solver is defined
    solver.dimensional_split = 1

    solver.all_bcs = pyclaw.BC.extrap
    solver.aux_bc_lower[0] = pyclaw.BC.extrap
    solver.aux_bc_upper[0] = pyclaw.BC.extrap
    solver.aux_bc_lower[1] = pyclaw.BC.extrap
    solver.aux_bc_upper[1] = pyclaw.BC.extrap

    domain = pyclaw.Domain( (0.,0.), (1.,1.), (100,100) )
    solver.num_eqn = 2
    solver.num_waves = 1
    num_aux = 2
    state = pyclaw.State(domain, solver.num_eqn, num_aux)

    Xe, Ye = domain.grid.p_nodes
    Xc, Yc = domain.grid.p_centers
    dx, dy = domain.grid.delta

    # Edge velocities
    # u(x_(i-1/2),y_j)
    state.aux[0,:,:] = - ( psi(Xe[:-1,1:],Ye[:-1,1:]) - psi(Xe[:-1,:-1],Ye[:-1,:-1]) ) / dy
    # v(x_i,y_(j-1/2))
    state.aux[1,:,:] =   ( psi(Xe[1:,:-1],Ye[1:,:-1]) - psi(Xe[:-1,:-1],Ye[:-1,:-1]) ) / dx

    solver.before_step = set_velocities
    solver.step_source = source_step
    solver.source_split = 1

    state.q[0,:,:] = (Xc <= 0.5)
    state.q[1,:,:] = (Yc <= 0.5)

    claw = pyclaw.Controller()
    claw.tfinal = t_period
    claw.solution = pyclaw.Solution(state, domain)
    claw.solver = solver
    claw.keep_copy = True
    claw.setplot = setplot

    return claw

def setplot(plotdata):
    """ 
    Plot solution using VisClaw.
    """ 
    from clawpack.visclaw import colormaps

    plotdata.clearfigures()  # clear any old figures,axes,items data

    # Figure for pcolor plot
    plotfigure = plotdata.new_plotfigure(name='q[0]', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'q[0]'
    plotaxes.scaled = True

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 0
    plotitem.pcolor_cmap = colormaps.yellow_red_blue
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1.0
    plotitem.add_colorbar = True
    
    # Figure for contour plot
    plotfigure = plotdata.new_plotfigure(name='q[1]', figno=1)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'q[1]'

    # Set up for item on these axes:
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = 1
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1.0
    plotitem.add_colorbar = True
    
    return plotdata

if __name__=="__main__":
    from clawpack.pyclaw.util import run_app_from_main
    output = run_app_from_main(setup,setplot)