geoclaw.util module of utility functions¶
This describes new tools added in Clawpack 5.2.1.
Documentation auto-generated from the module docstrings¶
GeoClaw util Module $CLAW/geoclaw/src/python/geoclaw/util.py
Module provides provides utility functions.
- Functions
dms2decimal - Convert (degrees, minutes, seconds) to decimal degrees
dist_meters2latlong - Convert dx, dy distance in meters to degrees
dist_latlong2meters - Convert dx, dy distance in degrees to meters
haversine - Calculate the haversine based great circle distance
inv_haversine - Inverts the haversine distance
fetch_noaa_tide_data - Fetches water levels and tide predictions
-
clawpack.geoclaw.util.
bearing
(x0, y0, x1, y1, units='degrees', bearing_units='degrees')¶ Compute the bearing from (x0,y0) to (x1,y1), i.e., the angle clockwise from due North of the great circle path from point 0 to 1.
The value returned is thus between 0 and 360 if bearing_units=’degrees’, or between 0 and 2*pi if bearing_units=’radians’.
Note: If using this to initialize a radially-symmetric 2d velocity on the sphere based on a radial velocity U(r), symmetric about (x0, y0), set:
# lat-long assumed to be in degrees, r in meters r = haversine(x0,y0,x,y) beta = bearing(x0,y0,x,y,bearing_units=’radians’) u = U(r) * sin(beta) # beta measured from North! v = U(r) * cos(beta)
-
clawpack.geoclaw.util.
dist_latlong2meters
(dx, dy, latitude=0.0)¶ Convert distance from degrees longitude-latitude to meters.
Takes the distance described by dx and dy in degrees and converts it into distances in meters.
returns (float, float)
-
clawpack.geoclaw.util.
dist_meters2latlong
(dx, dy, latitude=0.0)¶ Convert distance from meters to degrees of longitude-latitude.
Takes the distance described by dx and dy in meters and converts it into distances in the longitudinal and latitudinal directions in degrees.
returns (float, float)
-
clawpack.geoclaw.util.
dms2decimal
(d, m, s, coord='N')¶ Convert coordinates in (degrees, minutes, seconds) to decimal form.
If coord == ‘S’ or coord == ‘W’ then value is negated too.
- Example
>>> topotools.dms2decimal(7,30,36,'W') -7.51
(Note that you might want to add 360 to resulting W coordinate if using E coordinates everywhere in a computation spanning date line.)
- Returns
float
-
clawpack.geoclaw.util.
fetch_noaa_tide_data
(station, begin_date, end_date, time_zone='GMT', datum='STND', units='metric', cache_dir=None, verbose=True)¶ Fetch water levels and tide predictions at given NOAA tide station.
The data is returned in 6 minute intervals between the specified begin and end dates/times. A complete specification of the NOAA CO-OPS API for Data Retrieval used to fetch the data can be found at:
By default, retrieved data is cached in the geoclaw scratch directory located at:
$CLAW/geoclaw/scratch
- Required Arguments
station (string): 7 character station ID
begin_date (datetime): start of date/time range of retrieval
end_date (datetime): end of date/time range of retrieval
- Optional Arguments
time_zone (string): see NOAA API documentation for possible values
datum (string): see NOAA API documentation for possible values
units (string): see NOAA API documentation for possible values
cache_dir (string): alternative directory to use for caching data
verbose (bool): whether to output informational messages
- Returns
date_time (numpy.ndarray): times corresponding to retrieved data
water_level (numpy.ndarray): preliminary or verified water levels
prediction (numpy.ndarray): tide predictions
-
clawpack.geoclaw.util.
haversine
(x0, y0, x1=None, y1=None, units='degrees')¶ x0,y0 is assumed to be a point (or an array with the same shapes as x1,y1) x1,y1 is a point or two arrays of points (of the same dimension) returns array with same shape as x1 and y1 containing distance of each point from (x0,y0).
For backward compatibility, also allows x0,y0 to be 2-tuples specifying two points, but this is not suggested since the notation is not consistent.
-
clawpack.geoclaw.util.
inv_haversine
(d, x1, y1, y2, Rsphere=6367500.0, units='degrees')¶ Invert the Haversine function to find dx given a distance and point.
Invert the haversine function to find dx given distance d and (x1,y1) and y2. The corresponding x2 can be x1+dx or x1-dx. May return NaN if no solution.